
Database Hacking:
Common Cyber

Attacks

** Name **

** Prepared for, Date **

1 Introduction

Databases hold and handle a tremendous amount of sensitive data interconnected to ev-

eryday processes in our World. However, they are prime targets for criminals seeking to

gain unauthorized access to valuable data. Database hacking refers to the exploitation of

vulnerabilities within database systems to gain unauthorized entry, extract sensitive infor-

mation, manipulate data, or disrupt operations. In this article, we will delve into the world

of database hacking, exploring common methods used in cyber attacks targeting databases.

1.1 Database Cyber Attacks

1. SQL Injection (SQLi): SQL injection is a widespread attack vector where an attacker

manipulates input fields of a web application to inject malicious SQL statements. By

exploiting poor input validation, the attacker can execute arbitrary SQL queries. This

may lead to unauthorized data extraction, data modification, or even complete control

over the database.

2. Cross-Site Scripting (XSS): Cross-Site Scripting attacks involve injecting malicious

scripts into web pages viewed by users. When a vulnerable web application fails to

properly validate or sanitize user-supplied data, the attacker can inject malicious scripts

that execute within the victim’s browser. XSS attacks can be used to steal session

cookies, gain unauthorized access to the database, or perform other malicious actions.

3. Privilege Escalation: Privilege escalation attacks aim to elevate an attacker’s access

privileges within a database. By exploiting vulnerabilities or misconfigurations, at-

tackers seek to escalate from a lower privileged user to a higher privileged user. This

1

allows them to gain access to more sensitive data, modify database structures, or per-

form other unauthorized actions.

2 Oracle Write Once Read Many(WORM)

Oracle Object Storage provides a reliable and scalable platform for storing and managing

large amounts of unstructured data. The ”write once read many” (WORM) feature in Oracle

Object Storage allows you to write data once and prevent any subsequent modifications or

deletions, ensuring data immutability for compliance and regulatory purposes. Here’s a

step-by-step guide on how to use Oracle Object Storage with the WORM feature:

1. Set up an Oracle Cloud Account: If you don’t have an Oracle Cloud account, sign

up for one at https://www.oracle.com/cloud/. Ensure that you have the necessary

permissions and access to create and manage Object Storage resources.

2. Create an Object Storage Bucket: Log in to the Oracle Cloud Console and navigate

to the Object Storage service. Create a new bucket, which acts as a container for

your objects. Provide a unique name for your bucket and choose the appropriate

compartment and storage tier based on your requirements.

3. Enable WORM: Once the bucket is created, select it from the bucket list. In the bucket

details page, navigate to the ”Management” tab and click on ”Object Versioning.”

Enable object versioning to ensure that objects cannot be overwritten or deleted.

4. Upload Objects: To upload objects to the bucket, click on the ”Upload Object” button

or use the API/SDKs provided by Oracle. Select the files you want to upload from

your local machine and specify the destination within the bucket. Once the upload

2

is complete, the objects are stored securely in the bucket and cannot be modified or

deleted due to the WORM feature.

5. Access and Retrieve Objects: To read the objects stored in the bucket, you can use

various methods such as the Oracle Cloud Console, REST APIs, or SDKs provided

by Oracle. Authenticate yourself using the appropriate credentials and retrieve the

objects by specifying their bucket name and object name. You can download or access

the objects based on your requirements.

6. Retention Period: Oracle Object Storage also allows you to set a retention period for

objects, specifying the duration for which the objects are immutable. This ensures

that the objects cannot be modified or deleted during the specified period. To set

the retention period, go to the ”Management” tab in the bucket details page, click on

”Object Lifecycle Policy,” and define the retention period for the objects.

7. Compliance and Governance: The WORM feature in Oracle Object Storage helps meet

compliance and governance requirements, ensuring data integrity and immutability. By

preventing modifications or deletions, it ensures that stored objects remain unchanged

for the defined retention period.

3 SQL Injection

3.1 Steps to execute a SQL Injection Kill Chain

1. Reconnaissance: The attacker gets information about the target web application at this

early phase. They investigate the structure, behavior, and potential vulnerabilities of

the application. This reconnaissance may include analyzing the source code of the

3

application, engaging with its user interface, or performing network scans.

2. Identify Injection Points: Within the target online application, the attacker detects

input fields or parameters where user-supplied data is not adequately sanitized or

validated. Login forms, search areas, and comment sections are all common injection

locations. These flaws provide opportunities for an attacker to inject malicious SQL

code.

3. Create Malicious Payload: After identifying the injection locations, the attacker creates

malicious SQL payloads to exploit the vulnerabilities. They write SQL statements that

distort the original query, allowing them to evade authentication, extract sensitive data,

or change the database’s content.

4. Inject Malicious Payload: The attacker now enters the created payload into the tar-

get input fields. Without sufficient input validation, the web application accepts the

inserted SQL code as legitimate and includes it into the database query.

5. Execution of Malicious Payload: The database server executes the altered SQL code,

resulting in unforeseen consequences. The attacker’s payload may take sensitive data

from the database, such as usernames, passwords, or credit card information, or it may

change existing data.

6. Exploitation: Following the successful execution of the malicious payload, the attacker

uses the gained information or control over the database for illicit objectives. They

may acquire unauthorized access to other sections of the system.

7. Covering Tracks: The attacker attempts to cover their tracks by erasing evidence of

the attack in order to avoid detection. This may include removing log entries, changing

4

records, or concealing their activity in order to make it difficult for forensic analysts

or incident response teams to track the assault back to its source.

3.2 SQL Injection Techniques

1. Blind SQL Injection: When an attacker cannot see the actual database output but may

infer information from the application’s behavior, this is known as blind SQL injection.

The attacker creates conditional SQL queries that evaluate to true or false, allowing

them to infer information from the application’s response or behavior. This category

includes techniques such as Boolean-based blind, time-based blind, and error-based

blind SQL injection.

2. Union-Based SQL Injection: The UNION SQL operator, which combines the results of

two or more SELECT queries, is used in union-based SQL injection. Attackers use the

UNION operator to introduce additional queries that retrieve data from other database

tables. The injected query must have the same amount of columns and be compatible

with the original query’s data types.

3. Function Call Injection: Some web apps allow you to run stored procedures or functions

from your database. Attackers take use of this functionality by inserting malicious SQL

code into input fields used to invoke database operations or functions. This can lead

to arbitrary code execution or unauthorized access to sensitive data.

5

4 SQL Injection in Databases

4.1 SQL Injection in Oracle

BSQL Hacker available on GitHub, is open source and suitable for both experienced users

and beginners seeking to automate SQL injections, particularly blind SQL injections. It

allows attackers to escalate privileges within a compromised system. Attackers can execute

arbitrary SQL commands, modify database entries, and gain unauthorized access to sensitive

information by exploiting SQL injection vulnerabilities.

4.2 SQL Injection in MySQL

A error-based SQL injection attack takes advantage of vulnerabilities in a web application’s

input validation to alter SQL queries and retrieve sensitive data from the database. In

an error-based attack, the attacker injects malicious SQL code that deliberately triggers

database errors, revealing valuable information.

6

References

[1] Object storage vs. block storage vs. file storage What is Cloud Storage?

[2] Types of database cyber attacks Types of Database Attacks

[3] What is SQL Injection Portswigger

[4] How to prevent SQL Attacks WebSecurity

[5] PL/SQL Injection sqlinjection

7

https://www.oracle.com/ke/cloud/storage/block-volumes/what-is-block-storage/vs-object-storage/
https://www.salvationdata.com/crime-cases/6-types-of-database-attacks-hackers-use-to-obtain-unauthorized-access/
https://portswigger.net/web-security/sql-injection
https://www.acunetix.com/websitesecurity/sql-injection/
https://www.sqlinjection.net/advanced/pl-sql/

	Introduction
	Database Cyber Attacks

	Oracle Write Once Read Many(WORM)
	SQL Injection
	Steps to execute a SQL Injection Kill Chain
	SQL Injection Techniques

	SQL Injection in Databases
	SQL Injection in Oracle
	SQL Injection in MySQL

