



[bookmark: _GoBack]TITLE: SOFTWARE ARCHITECTURE CONCURRENCY PATTERNS: RENDEZVOUS, ROUND ROBIN, STATIC PRIORITY, AND DYNAMIC PRIORITY

Author : First M Last

Institution Name:

Course Number: Course Name

Instructor Name

2

Due Date:

Abstract 
A key component of software architecture is concurrency, particularly in systems that need parallel processing and effective resource management. There are numerous concurrency patterns to handle various scenarios and requirements. The four commonly used concurrency patterns Rendezvous, Round Robin, Static Priority, and Dynamic Priority are the topic of this study. We will examine the underlying ideas behind each design, going over its benefits and drawbacks as well as possible applications. In order to highlight any parallels or discrepancies in the descriptions of these patterns, we will also compare them to other references.
Concurrency patterns are essential for the development of reliable and effective software systems. They facilitate simultaneous job execution, increase throughput, and aid in the management of shared resources. In-depth analyses of the four prominent concurrency patterns are presented in this research. We shall also make use of previous references to contrast and compare our findings.

1. Rendezvous Pattern:
The rendezvous pattern synchronizes a group of threads or allows data sharing among a group of threads. It is a condensed version of the guarded call pattern. It elevates the synchronization of two threads to the status of an object. This pattern has numerous slight variations. The Rendezvous object might have information that has to be shared while the threads synchronize, or it might just offer a way to synchronize any number of threads with a synchronization policy or precondition at a synchronization point before letting them to each continue on their own. The simplest of these prerequisites is the presence of a specific quantity of threads at their synchronization locations. The thread barrier pattern is a name for this unique circumstance.
a) Working Principles of the Rendezvous Pattern:
The Rendezvous pattern uses a synchronization point where concurrent processes or threads hold off on starting their execution until all participants have arrived. This synchronization point serves as a rendezvous point, preventing any process from moving forward until every other process has arrived at the rendezvous. Different mechanisms, such as semaphores, monitors, or condition variables, can be used to synchronize data.

By avoiding data inconsistency and race situations, the Rendezvous design assures synchronization and order. It enables processes to controllably coordinate their execution, exchange data, and share resources. Processes can work safely after synchronization at the rendezvous point since they know that all prerequisites have been satisfied.


2. Static Priority Pattern
The Static Priority pattern uses predetermined criteria to assign fixed priorities to concurrent activities. Every process has a priority level assigned to it that controls its access to resources or execution order. Processes with a higher priority are given priority over those with a lower priority, ensuring that urgent activities are attended to right away. This pattern is advantageous in situations where some tasks must be completed immediately or continuously.

Comparison with Other References
There is agreement on the static assignment of priorities to concurrent processes when comparing the description of the Static Priority pattern with other references, such as "Real-Time Systems: Design Principles for Distributed Embedded Applications" by Laplante. The fundamental ideas and goals of the Static Priority pattern may, however, differ in nomenclature or exact implementation details between sources.

3. The Round Robin pattern
The Round Robin pattern is a scheduling method that evenly distributes resources or processing time among a number of concurrent tasks. It entails distributing resources to processes in a circular order, cyclically, to guarantee that each process gets a fair portion of resources. In multitasking operating systems, this pattern is frequently used to allocate CPU time among numerous threads or processes.
Additional references
The Round Robin scheduling algorithm is cited as a common CPU scheduling method in "Operating System Concepts" by Silberschatz et al. The fairness of resource distribution and famine prevention are highlighted in the paper. The lack of priority concerns in Round Robin, however, means that it may not be appropriate for real-time systems.

Comparison with Other References
There is agreement with the cyclic distribution of resources and equitable scheduling of processes when comparing the description of the Round Robin pattern with other references, such as "Operating System Concepts" by Silberschatz et al. However, while maintaining the fundamental ideas and goals of the Round Robin pattern, various references may offer further implementation information or different nomenclature.

4.Dynamic Priority Pattern
According to their shifting needs or system conditions, concurrent processes using the Dynamic Priority pattern dynamically modify their priorities. This design pattern enables adaptive scheduling, in which the relative importance of activities is continuously reflected in the priority of the processes. Dynamic priority provides for effective resource usage while ensuring that vital tasks receive the required resources during times of high demand.
The Dynamic Priority pattern typically employs a mechanism that monitors and evaluates the relevant criteria. Based on this evaluation, the system can adjust the priorities of processes to reflect their current significance. Higher-priority processes receive increased access to resources and are scheduled with higher frequency, ensuring that critical tasks are promptly executed.

Conclusion
In order to create a scalable, effective, and reliable software systems, concurrency patterns are essential. In this article, we looked at the Rendezvous, Round Robin, Static Priority, and Dynamic Priority concurrency patterns. We talked about how they function, as well as their benefits, drawbacks, and applications. We determined their consensus and found any differences in their descriptions by comparing these patterns to other references. Software architects and developers can make wise design decisions and create dependable concurrent systems by understanding these concurrency patterns.




REFERENCES
1. "Pattern-Oriented Software Architecture, Volume 2: Patterns for Concurrent and Networked Objects" by Douglas C. Schmidt et al.

2. "Concurrency: State Models & Java Programs" by Jeff Magee and Jeff Kramer.

3. "Real-Time Systems: Design Principles for Distributed Embedded Applications" by Peter A. Laplante.

4. "Operating System Concepts" by Abraham Silberschatz, Peter B. Galvin, and Greg Gagne.

5. "Modern Operating Systems" by Andrew S. Tanenbaum and Herbert Bos.
6. "Operating Systems: Internals and Design Principles" by William Stallings.


