
1

Evaluating Software Maintenance Technology*
Dag Sjøberg†, Ray Welland‡, Malcolm Atkinson‡, Magne Jørgensen§,

John Petter Martinussen¥ and Arne Maus†

†University of Oslo, Norway, ‡University of Glasgow, UK, §Telenor, Norway ,¥SDS, Norway

Abstract: It is widely documented that the cost of maintenance activities is the dominant part of
the total lifetime expenditure on a software system. Still, there is no commonly accepted
framework for evaluating technology that is supposed to support maintenance. This paper
discusses methods for such evaluation, which include both analytical work, such as development
of taxonomies, and empirical work based on benchmarks. Several of the methods have been
applied in experiments that we have already finished, in experiments that we are currently
running and in planned experiments. What we report is initial work carried out within severe
resource limitations. Hence, our work should be regarded as a basis for more extensive work
which is required in this area.

Keywords: Maintenance, technology evaluation, research methods, experiments, benchmarks

1 Introduction
Large, long-lived and data-intensive application systems that satisfy a complete area of
information-processing requirements, such as most information systems, CAD/CAM
systems, CASE environments, etc. must continuously undergo change in order to reflect
change in their environments [9, 12, 15]. Figures describing the maintenance proportion
of the total lifetime expenditure on a software system vary between 50% and 90% [4, 16,
24]. As application systems live longer and grow in size and complexity, it is likely that
this trend will continue.

In this paper we use Boehm's definition of maintenance [3]: “the process of
modifying existing operational software while leaving its primary functions intact.”
However, we do not intend to attempt to define precisely where the boundary between
maintenance and development lies as we feel that this is largely a managerial decision
which is organisation dependent.

The purpose of our work is to evaluate maintenance methods and the tools that
support those methods. The purpose of the evaluation technology is to have a means to
test hypotheses to decide whether for example:
• Method(ology) X improves maintainability.
• Tool A improves maintainability or tool A supports maintenance better than tool B.
We are seeking objective measures for evaluation that are founded on empirical work.
Our work includes collecting data to identify important factors in maintenance tasks, such
as the types and frequency of changes; how effective existing documentation is, the effect
of the experience level of the software maintainer on the efficiency of maintenance.

The scope of our work is to consider the efficiency of the maintenance process while
retaining satisfactory levels of quality and performance of the maintained product. It is
necessary to consider the trade-off between the long-term effectiveness of the
maintenance process versus the short-term speed of change. For example, a 'quick fix'
usually leads to loss of software structure which makes future maintenance more difficult.
Moreover, maintenance technology is concerned with making changes effectively when
they have been approved via some change control process. We are not concerned with
change control [6], the commercial (political) problem of controlling which changes are
to be made (evaluating cost/benefit, administering the change process, etc.).

Our work focuses on administrative data-intensive application systems, which are
viewed as consisting of the four components shown in Figure 1. The figure illustrates
that a change in one of the user interface, application programs and data model
components may mutually imply a change in the other components. A change initiated in
the database (extensional data) is possible for performance reasons, but should not imply
a change in the schema.

* Appeared at Norwegian Conference in Informatics, Alta, Norway, 18-20 November, 1996, pp. 49-61, TAPIR 1996

2

Application
Programs

Data Model/
Schema

Database
(ext. data)

User
Interface

A B means a change in A may imply a change in B

Figure 1: Conceptual model of administrative data-intensive application systems

These systems usually have a long life-time and will constantly evolve as user
requirements change therefore they will need to be maintained over a number of years.
The following types of systems are beyond the scope of this paper: real-time systems;
scientific and numerical programming; and system software.

The remainder of this paper is organised as follows. Section 2 motivates the need for
evaluation of maintenance technology in further detail. Section 3 discusses research
approaches to such evaluation. In Section 4 we describe work undertaken at Telenor on
the evaluation of CASE tools for maintenance; this work provides valuable empirical
results which we can use as the basis for further experiments. This is followed by a
description of a number of experiments to evaluate maintenance technology; we discuss
some pilot studies that are currently being undertaken and also some possibilities for
further experiments using maintenance technology that we have developed. Section 5
concludes.

2 The Importance of Maintenance Evaluation
Software maintenance has traditionally been neglected in teaching and practice compared
with initial system construction. This applies to system development methods, data
modelling techniques, CASE tools, etc. Nevertheless, a range of methods, techniques,
language constructs and tools (all of which are termed technology in this paper) are being
proposed and developed with the purpose of supporting maintenance. However, to the
authors' knowledge, there exists no systematic framework for evaluating such technology.
At present, sources of “evaluations” are:
• consultancy reports (e.g. Ovum, Gartner Group)
• trade press
• demonstrations by vendors
• subjective assessment from reference customers
• local “gurus”
None of these provide a systematic method of evaluation. The best that can be achieved
is usually a checklist of features which are supported (or not supported). There is no
systematic measures of maintenance efficiency and a proper cost/benefit analysis is not
possible.

In general, the various sub-disciplines of information systems and software
engineering need theoretical foundations that can provide [11]: “(1) criteria for
evaluation, (2) means of comparison, (3) theoretical limits and capabilities, (4) means of
prediction, and (5) underlying rules, principles, and structure.”

There is clearly a need for such foundations. We are often in the situation where we
want to evaluate methods, techniques or tools according to some purpose, or we want to
compare them with each other. For example, consider the important problem of how to

3

maintain and redesign large information systems, how can we claim that one method or
tool is better than another method or tool? Such questions are pertinent both to research
and commerce. Research proposals for new technology should be evaluated and
contrasted with existing technology in a well-defined framework. Companies and
organisations need a framework for evaluation when they are to buy and start using new
products.

The cause of changes [23] is not particularly important, except as a motivation for
our work: since change is inevitable, there is a need for maintenance technology.
Swanson divided maintenance activities into corrective, adaptive and perfective
maintenance (preventive maintenance has also been added). These categories describe
the reason for changes requested by end-users or maintainers. One could envisage a
taxonomy of the cause of change, being developed by further refinement of Swanson’s
categories. This is, however, beyond the scope of this paper.

In order to evaluate maintenance technology we do need to identify the intent of a
change so that this can be linked to the actual process of making changes. For example,
we can automatically log what operations a user is doing but from log data we have no
idea what they intended to do and whether they are making effective use of the
technology.

3 Methods to Evaluating Maintenance Technology
In this section we propose research methods or approaches to evaluation of maintenance
technology. We first give an overview and then discuss taxonomies and experiments in
further detail.

3.1 Research Approaches
This paper emphasises empirical approaches to evaluate maintenance technology.
However, evaluation of maintenance technology will always include non-empirical
(theoretical/analytical) work. It is, for example, meaningless to report observed results if
there are no common (or well-described) conceptual model to explain and communicate
what is observed.

Measurement of maintenance technology is not as “simple” as measurement of
length or weight, because we lack a commonly accepted or well-defined empirical
relational system. For this reason, we need more than measures for a meaningful
maintenance technology evaluation. Below some requirements and corresponding
research approaches are proposed:
i) We need a basic understanding of the maintenance technology and its environment

(i.e. we need to develop an understanding of the studied empirical relational system).
A problem here is to know how much previous (a priori) understanding that will be
necessary to develop models, measures and interpretations.
Possible research approaches: Observation of the use of the maintenance
technologies, introspection of one's own impressions and feelings when using the
maintenance technologies, observation and analysis of the design and
implementation of the maintenance technology, previous understanding of and
experience in similar technologies and environment, etc.

ii) We need definitions and classifications of important characteristics of the
maintenance technology and its environment, i.e. we need to model our knowledge
of the empirical relational system (developing a commonly accepted universe of
discourse). Here, it is important to consider how measurement theory restricts the
use of statistics and formal treatment according to how the characteristics are
modelled.
Possible research approaches: Modelling work, i.e. definitions, classifications,
taxonomies, frameworks, design methods, etc., based on own or others knowledge of
the maintenance technology and its environment (the reported work is supposed to
extend this knowledge).

iii) We need to develop new or use previously developed measures (i.e. we need to
develop the mapping between the empirical and the formal relational system) that

4

enable analyses and interpretations of the measured values. A maintainability
measure may, for example, only be meaningful if the commonly accepted “intuition”
of maintainability is preserved into our formal empirical system.
Possible research approaches: Analytical work, i.e. deductions, inductions,
consequence analyses, etc., that combines knowledge about the “real world” and
knowledge of formal techniques to manipulate the measured data (statistics,
calculations, scale theory, etc.).

iv) We need to develop a method for the measurement (i.e. we need to develop a means
to evaluate the quality and interpretability of the measured and calculated values).
Possible research approaches: Introspection, case study (one phenomenon
measured only once in an uncontrolled environment), repeated observations in an
uncontrolled environment, experiment (repeated or not repeated observations in a
controlled environment) or combinations of these approaches.

The relationships between the actions described in i) to iv) are complex. In principle, the
knowledge achieved through one action may impact all other actions. For example, the
result of one maintenance technology evaluation may increase the knowledge of the
studied empirical relation system, which may lead to more useful models and better
measures, which may lead to better measurement frameworks and so on. Therefore,
iterations may be necessary in order to establish useful evaluations/measurements.

3.2 Taxonomies
There is generally a lack of taxonomies in computer science. A discussion of the
characteristics and use of some of those that exist can be found in [8]. This section
describes preliminary work on a software maintenance taxonomy; a detailed definition is
an issue for follow up work. The motivation for such a taxonomy is to provide a means
to obtain a better understanding of the potential change processes. In particular, we can
inspect each kind of change and consider how it is supported by the maintenance
technology being evaluated.

A maintenance task may involve changes in all of the four components of an
application system as described in Figure 1: data model/schema, database/extensional
data, application programs and user interface. For changes in each of these components
we may develop a change taxonomy. We call a collection of such change taxonomies a
maintenance taxonomy.

Schema evolution taxonomies for object-oriented databases have been developed [2],
although they are not complete. Table 1 lists the kind of changes that may occur in a data
model described in the Enhanced Entity-Relationship model [5]. A further discussion can
be found in [18].

Addition, change and deletion of default values, definitions, etc. are examples of
changes at the extensional data level. Developing a change taxonomy for application
programs requires changes to be described at a fairly high level. An example of
classification in terms of changes in code can be found in Jørgensen's earlier work [9].

Table 1: Data model changes

Attribute Changes Entity (class) Changes

• add attribute

• delete attribute

• change type of attribute

• rename attribute

• move attribute

• copy attribute

• add entity

• delete entity

• merge entity

• split entity

• rename entity

• move entity

• add superclass

• remove superclass

5

A taxonomy of potential user interface changes will include addition, change and deletion
of items such as fields, labels, buttons, menus, screens, etc. Certain kinds of constraint
checking and error fixing of user input may also be captured in a user interface change
taxonomy.

A maintenance taxonomy is supposed to denote a complete set of changes that can
be carried out. Although developing complete change taxonomies may be very hard (for
example, they may become very large), our aim is still to enhance the notion of taxonomy
to also include annotations of the frequency of each change (based on empirical data) and
some indication of how difficult it is to carry out the change. Moreover, we also consider
the possibility of including in an enhanced taxonomy the consequences of each change in
one of the components on the other components.

3.3 Experiments and Benchmarks
The usability of maintenance technology can be analytically evaluated applying a
maintenance taxonomy for software changes. However, to get a better picture of the
usability, the analytical evaluation should be complemented with experiments. These
may include both case studies and controlled experiments, both of which may use
benchmarks. An example of a maintenance benchmark is described in [10].

Whereas a taxonomy is supposed to capture a complete set of cases, a benchmark is
supposed to be a selection of a few, but typical cases. Hence, a maintenance benchmark
denotes an incomplete set of changes/maintenance tasks in the sense that only a few, but
typical tasks are included, enabling maintainers to perform them in practical experiments.
To give a flavour of the kind of tasks, the two first tasks of the benchmark are as follows.
Task 1: “Development of a new, read-only, user screen with data from an existing
database table (or object class) with 5 attribute types.” Task 3 is more complex:
“Development of a new read-only screen with data from Table X (5 attribute types, X.1
to X.5) and Table Y. Table X has to be created, Table Y exists and has 3 attribute types
(Y.1 to Y.3). There is a foreign key from X.4 to Y.1. The new user screen should present
the attributes in the following sequences: X.1, X.2, X.3, Y.2, Y.3, X.5.”

Other differences between a maintenance taxonomy (MT) and a maintenance
benchmark (MB) include:
• MB takes an empirical approach and measures change costs in terms of time and

possibly the number of code lines changed. MT takes an analytical approach and
attempts to evaluate the maintenance technology in terms of a detailed inspection of
its support for each given change and change propagation through the given
application. For example, for a given schema change, MT should have an idea of
necessary consequential changes on application programs, user screens and
extensional data (e.g., adding a new attribute requires a sensible default value for the
existing entities).

• Consequential changes should also be specified for the user interfaces and
application programs. The MB does this implicitly. For example, Task 3 of
Jørgensen’s MB described above implies a schema change (specified in the task
description) and also changes to application programs (not specified in the
description).

• In practice, characteristics (size, complexity?) of the given application will influence
the support given by the maintenance technology being evaluated. This is implicit in
a MB evaluation, but should be explicit parameters when performing an analytical
evaluation (see Table 2 below).

There are several approaches to conducting experiments:
i) Real (requested) tasks + actual effort
ii) Real tasks + actual effort + benchmark tasks (undo)
iii) Real tasks + estimated effort + benchmark tasks (undo)
iv) Student experiments + actual effort + benchmark tasks
The purpose of applying benchmark tasks in addition to the real tasks in (ii) and (iii) is to
calibrate the experiment. The benchmark tasks must in these cases be undone since they
should not have any affect on the operational system.

6

In addition to the specific measurements of effort collected when conducting the
experiments, we should identify general properties such as those listed in Table 2. A
particular concern is the major limitations of industrial experiments that the perturbation
of the system under study must be minimised and a low risk strategy with regard to the
overall production process must be adopted. For example, when carrying out an
empirical study of the work of maintenance programmers, there must be minimal
disturbance of their work and any experiment must not add to the risk of failing to deliver
a modified product. In a university environment, using students as experimental subjects,
it is necessary to ensure that any experiment is part of the students' learning experience
and that their interest in the subject is not reduced by involvement in boring (and
apparently meaningless) experiments.

Table 2: Examples of properties of application system, task, maintainer and experiment

Application System Task

• Application domain
• Application size
• Application age
• Implementation technology
• Supporting technology
• Team size
• Frequency of various kinds of change
• Difficulty of making the change (special issues

other than time)

• Type {examples?}
• Complexity
• Language
• Size
• Code change {class/kind?}

Maintainer Experiment

• Experience
• Education
• Skill

• Duration
• Scale
• Control cases
• Resources
• Procedures
• Analysis
• Invariants
• Perturbation (of industrial systems) caused by

experiment – study things that are happening
versus building an artificial experiment

• Typical versus random tasks

Frequently, empirical data has been collected by the use of questionnaires or manual
transcriptions of interviews. We have recently been focusing on how such data collection
can be automated. Section 4.3 describes a technique for automatic logging of tool
operations and other kinds of information. A long term goal is to supplement such
logging by exploiting program and persistent store information recorded in the thesaurus
[17]. The thesaurus can be used to collect data on the kind of changes that are occurring
by taking snapshots of a system as it evolves and recording deltas between the units of
change we want to measure [17].

4 Applying the Methods
This section describes ongoing and planned experiments or pilot studies that apply our
evaluation methodology to assess technology that is supposed to support maintenance.
The purpose of the experiments is twofold. First, conducting the experiments will
demonstrate the potential usefulness of the evaluation methods, and the results will thus
feed back into the design of the methods. Second, the evaluation of the maintenance
technology itself is also important.

7

Section 4.1 reports on a finished experiment at Telenor, Section 4.2 and 4.3
experiments in progress and Section 4.4 planned experiments.

4.1 Evaluating Maintenance Efficiency of CASE Tools
Recently an evaluation of development and maintenance efficiency of CASE tools was
carried out at Telenor, see [10] for a full description. The three main purposes of this
experiment were:
• to develop and validate a method for the evaluation of how CASE tools impact

software development and maintenance efficiency.
• to study the impact of a few selected CASE tools on software development and

maintenance efficiency in Telenor.
• to provide a “database” of efficiency values to be used for estimation purposes.
The development efficiency measures were based on the MkII Function Point (MkII FP)
measure, together with the measures Effort (E), Time (T), and Lines Of Code (LOC).
The variables are described below:
• MkII Function Point (MkII FP) is a measure of the size of the applications in terms

of its user required functionality.
• Effort (development) is a measure of the total effort spent on a project, from the

requirement phase to the installation phase, including user participation in the
requirement and test phases.

• Effort (maintenance) is a measure of the estimated effort (average case) to solve a
specified maintenance task (a benchmark task). The effort estimate should include
requirement analysis, design, implementation, inspections and tests.

• Time is a measure of the total calendar time on a development project, from the
requirement phase to the installation phase.

• Lines of Code is a measure of the number of physical lines of source code written
(i.e. not generated) by a developer. Comments were not counted. Reused code was
only counted if there were changes on the reused code. All writing of source code
was counted, inclusive the number of physical lines of code written in CASE tool
forms (tool screens). Menu selections, navigation, etc. were not counted.

Based on the basic measures we defined a set of development efficiency measures, which
are described in [10]. Both the basic and the development efficiency measures were
exploited in the simple, yet powerful, technique we developed for determining the
maintenance efficiency, the Software Maintenance Benchmark Task Technique:
1. Determine the common characteristics of the applications maintained applying the

CASE tools. In our study, all of the applications were connected to a database and
had screens for user input and output.

2. Develop typical maintenance tasks (the benchmark maintenance tasks) which are
meaningful to carry out on all the applications, i.e. maintenance tasks based on the
common application characteristics from step 1.

3. For each of the selected applications, ask experienced maintainers to estimate the
on-average case effort needed and the on-average case LOC to be written to solve
the task. It may be even better to ask the maintainers to carry out the maintenance
tasks and then measure the effort and LOC. However, this may not be possible in a
professional maintenance environment.

4. Compare and analyse the estimates.
Although this approach is simple we have not seen similar approaches to evaluate
maintenance efficiency. As opposed to traditional “maintainability metrics” our
technique is based on the assumption that maintainability is not a characteristic of the
application alone, but of the application, the tools and the maintenance tasks to be carried
out. Our main indicators of maintenance efficiency are the sum of estimated effort and
the sum of the estimated size for the maintenance tasks on an application.

8

4.2 Investigating Documentation and Maintenance Practices and Needs
We have been carrying out a case study at a major Norwegian software house to
investigate hypotheses on documentation and maintenance practices. Information from
approximately 40 maintenance tasks conducted by 25 maintainers have been collected.
Examples of hypotheses being tested are:
• “Understanding the existing system counts for the majority of the time spent on

maintenance work.”
• “The majority of documentation is produced to satisfy quality assurance

requirements and is not directly used for development or maintenance activities.”
• “Written documentation is used less than personal communication.”
Some of the hypotheses testing is a replication of some of Jørgensen’s work in another
context [9]. Comparing results from two different companies is a significant part of the
experiment. The analysis is not yet finished, but we have preliminary results confirming
some of Jørgensen's results and other results that indicate differences. The complete
experiment is described in [13].

4.3 Maintaining a Napier88 Application
This section describes an experiment in a controlled environment whose results are
currently being analysed. The activities of programmers in the Glasgow Napier88 [14]
community were automatically logged during the experiment. We will describe the
logging technique, the kind of data analysis we can produce and the kind of tasks carried
out in the experiment.

Napier88 programs can be manipulated within a program development environment
called the Persistent Workshop [22]. A Persistent Workshop log records, for each
operation executed on the current WorkItem (the units on which the Workshop users are
working. e.g. a source text):

username timestamp tool operation workitem

Such a log gives us a detailed picture of who is doing what and when. We have just
started analysing the log entries recorded for 11 users in a period of about 6 weeks
(totalling about 9400 entries). Examples of analysis include use frequency of tools and
operations (cf. Sjøberg's analysis of use of Napier88 language constructs [20]). Table 3
shows an example from which we can identify the relative usage of the various tools in
the Workshop. Popular tools and operations may be the subject of optimisation.
Moreover, we may ask questions about why a particular tool is heavily used or,
alternatively, why it is not used as much as we would expect. For example, the importer
is a tool which imports text (program or data) from Unix files into the persistent store –
why is it used so heavily? One possibility is that users are creating and editing source
files outside the persistent store and importing them for processing. We have anecdotal
evidence that this is at least part of the reason for the high usage of the importer, because
the editors available in the Unix environment (such as emacs) are much more powerful
than the Workshop editor.

The groupExporter provides a mechanism for exporting groups of WorkItems from
the Workshop into Unix files. The very low usage of this tool, especially when
contrasted with the high usage of the importer, suggests that the users did not know about
it or perhaps it was unreliable! Of course, we also need to consider the interaction
between the maintenance tasks being undertaken and the tool usage profile. Some of the
tasks may be unlikely to require much use of certain tools. We could attempt to calibrate
this by getting experienced Napier88 programmers to carry out the same tasks and study
their tool usage profiles.

9

Table 3: Frequency of use of the tools in the Persistent Workshop

Tool Frequency Percent

importer 2232 35.1

linker 1840 28.9

compiler 1178 18.5

editor 732 11.5

exporter 251 3.9

duplicator 85 1.3

remover 23 0.4

groupExporter 13 0.2

editorDeclSet 2 0.0

Total 6356 100.0

The relative usage of certain groups of tools is also interesting. Again, looking at Table 3
– why is the compiler used more often than the editor and the linker significantly more
than the compiler, when we might expect users to carry out an edit-compile-link cycle of
operations? We can only really begin to answer this type of question by studying
sequences of operations and we show some preliminary results of pairs of successive
operations in Table 4. This table shows which operations (columns 2-7) immediately
follow a given operation (column 1).

The operation change WorkItem (‘changeWI’) is an implicit operation generated
when the user changes the current WorkItem. That means, entries in the changeWI row
show the first operation of a new sequence of operations on the selected WorkItem. The
combination of changeWI and save indicates that the user has changed the current
WorkItem, edited the newly selected WorkItem and saved it.

The full table is too large and detailed to fit into the paper. Thus we have displayed
several combinations of operations which are of interest and collected the remaining
operations in the ‘other’ row and column. Most of the operations in the ‘other’ row and
column relate to import and export of WorkItems (1259 of the 1355 in the ‘other’ row
and 1278 of the 1374 in the ‘other’ column). As we discussed earlier, we believe these
large numbers are related to the lack of the sophistication of the Workshop editor.

Identification of repeated operational sequences may call for a command that
includes several operations (e.g. compile & link). Moreover, the log information may
identify the need for user education ('improving the user'!). Identification of common
errors may also call for user education, but may also indicate required improvements in
the programming environment.

Table 4: Frequency of operations succeeding a given operation

Prevop\op changeWI compile link remove save ‘other’ Total

changeWI 0 1148 1240 13 311 394 3106

compile 197 61 949 2 282 461 1952

link 1663 17 60 0 25 442 2207

remove 20 2 0 0 0 1 23

save 163 429 0 0 83 46 721

‘other’ 972 303 12 8 30 30 1355

Total 3015 1960 2261 23 731 1374 9364

The Napier88 logging technology and the Persistent Workshop have both been developed
in Glasgow and so we have control over the technology being used in the experiment
described below. We will emphasise that this experiment is a pilot study that aims to
improve the evaluation technology; the results of this study may suggest alternative

10

logging mechanisms or modifications to the Workshop structure, which may make future
experiments more meaningful.

The logs in their present form are too low level and cannot be linked to the higher
level (more abstract) changes that are being implemented. We could attempt to mark the
log at the beginning and end of a change task, but this would involve either having an
observer sitting with the programmer or relying on the programmer's discipline to record
what they are doing. The first of these options is infeasible because it is too labour
intensive (cf. 'think-aloud' protocols in HCI research). Experience with other tools, such
as RCS, suggests that programmers cannot be relied upon to record what they are doing
or why they are doing it!

Munros – Maintenance Tasks
The experiment was carried out with five groups of students, four groups of two and one
group of three. The students were given a large application written in Napier88 which
had been built as a demonstrator for an ESPRIT project (FIDE2). This application had
been written by several different programmers and consists of about 6000 lines of code in
100 modules. Before starting the experiment the code was tidied up to try to remove
gross anomalies in the structure.

The application concerns the storage and display of information about Munros,
Scottish mountains which are over 3,000 feet in height, which were originally listed by
the Reverend Munro in a famous set of tables. Some hillwalkers and mountaineers in
Scotland set themselves the target of climbing all the Munros and this application records
details of which mountains have been climbed by a particular climber and with whom.
Details of 288 Munros are stored and displayed by this application. The data also
includes photographs of some of the Munros which are stored as images in the database.
The data is bulk loaded from a spreadsheet giving details of all the Munros and their
current status; the images are added separately after the basic data has been loaded.

The data is displayed using a starfield viewer [1] which allows various queries to be
formulated using sliders. The main display representation is an outline map of Scotland
with the locations of the Munros depicted by small icons. The icons vary in size to show
the relative heights of the mountains and are colour coded to show whether they have
been climbed or not. The data displayed can be modified by zooming the map viewing
area or by using a variety of sliders, for example: with whom climbed or when climbed.
The details of any individual mountain can be displayed in a separate dialogue box.

The students were given a set of five tasks to make changes to the interface; each
task was progressively more difficult than the previous one but they could all be carried
out independently. Students were required to complete a task and demonstrate the
completed changes before moving onto the next task. While the tasks were being carried
out, the students’ use of software tools in the Persistent Workshop was being
automatically logged. The final state of their software was also captured so that the
changes made could be analysed. The five tasks were:
• Change the check boxes done & not done to be labelled climbed & not climbed,

respectively. Required a simple change of text labels in the interface.
• Icons for mountains are currently differentiated by colour, blue for climbed and red

for unclimbed. Change these icons to use shape encoding. Required a change of
presentation of database state involving the modification of icons.

• Add further encoding to the icons to indicate which of the unselected mountains have
associated photographs in the persistent store. This is useful if when building up a
slide show of mountains. Required a change of representation using additional
information from the persistent store combined with information about the current
state of the interface.

• Add a new dialogue to the Munro details window which allows the user to enter the
date of ascent, and with whom climbed. Commit the change if details are confirmed
by the user and the date is acceptable. Required a new dialogue to update an existing
data structure. The date and with whom climbed data is currently stored in the
persistent store but cannot be updated interactively.

11

• The input data used to build the persistent data structure includes a list of maps
(Ordnance Survey sheets) which show a particular Munro. The current application
only stores and displays the first sheet on this list. Enhance the application to read,
store and display the list of all relevant sheets for a particular Munro. Required a
modification to the persistent storage structure, the bulk load routine and the display
interface.

The tasks were chosen to represent similar types of changes to those proposed by
Jørgensen [10]. Although the environments are different, it is possible to map these
Napier88 tasks onto similar maintenance tasks identified in a commercial environment.
After carrying out a full analysis of the logs and code from this year's experiment, and
having rectified any weaknesses in our measurement technology, we intend to design and
run a similar experiment during the next academic year.

4.4 Maintenance Technology to be Evaluated in Future Experiments
This section reports on technology supposed to support maintenance that the authors have
been and are currently working on. For the work that is still going on, it is at present too
early to conduct experiments to evaluate the potential maintenance benefits, but we will
briefly describe the technology and outline how it may be evaluated.

We have developed a tool, the Builder, which supports rebuilding activities such as
recompilation and linking [21]. The Builder is implemented in Napier88 and provides
build management, including incremental linking, for applications written in Napier88. It
exploits features such as strong typing, run-time linguistic reflection, and referential
integrity provided by the language processing technology. The Builder operates over
both programs and (complex) data, which is in contrast to conventional language-centred
tools.

We have also been involved in work on supporting maintenance by defining a
coherent set of (optional) rules and conventions that should be adhered to in a given
programming environment and that which are explicit and checkable [19]. A particular
such a set is the Structured Persistent Application System Model (SPASM), which is
tailored to the programming environment of Napier88. A requirement is that such
constraints are automatically checkable, and we have implemented a tool called
SPASMCheck. We plan to conduct experiments similar to the one outlined in the
previous section, aiming to evaluate the effect of using the Builder and SPASMCheck,
and thus indicate how they can be improved.

Another project is ZEST (Zoned Evolvable System Technology), which is concerned
with the architecture of large persistent application systems (PASs). Our basic premise is
that many PASs are composed of zones which are the units of evolution of the application
system. A zone is usually related to the structure of the organisation using the PAS; a
zone may be implemented using heterogeneous technology and is continually evolving
internally. However, each zone has clearly defined interfaces to other zones and these
interfaces change comparatively infrequently, normally by negotiation between the
owners of inter-connected pairs of zones. The main objective of ZEST is to define the
inter-zone architecture of a PAS and to study the use of zones as the units of software
evolution. The work on the maintenance project reported in this paper is of interest for
two reasons: we can get useful information on the types of changes which take place at
the interfaces between zones; and we expect other types of maintenance technology to be
used within the zones. ZEST is funded by the UK EPSRC, for three years from 1 January
1996, and more details about the project can be found on WWW [7].

The Builder, described above, uses dependency graphs, automatically inferred from
an application's structure, to systematically rebuild the application. However, at present,
the dependency graph is not presented to the user in a graphical form. We believe that
providing a graphical representation of dependency graphs and associated tools will be a
useful aid to the programmer. As build management is an important component of
maintenance, we hypothesise that providing visualisations of dependency graphs will
improve the efficiency of maintenance. Therefore, one of our long-term aims is to
evaluate the effectiveness of these visualisations as an aid to maintenance, which would
fit within the framework of the present project.

12

The visualisation of dependency graphs will provide a challenging project for
Master's student on an Advanced Information Systems course at Glasgow. For a realistic
application the dependency graph will be large and have many connections. There are
some interesting problems in presenting such large graphs including: how to scale or
partition the graph; providing different views of the graph (for example, using 'fish-eye'
views); using colour to highlight certain features of the graph or to show the impact of
changes. It is also possible to analyse the dependency graph looking at the connectivity
of the graph or how components are clustered; measures of this type might give is some
measure of the 'maintainability' of the application. We may also be able to identify
partitions of the graph which allow maintenance activities to be carried out safely in
parallel on different parts of an application.

A typical application will use many standard library components and the
visualisation of an application will be simplified if we can 'prune' the graph to remove
immutable components which are provided and not modifiable by the programmer. (This
is connected to some other work we are doing on copying parts of applications between
stores and how we can safely cut the links to standard components.)

5 Conclusions
The work reported in this paper is a result of a project on evaluation of software
maintenance technology. We first discussed approaches to solving this problem,
including analytical work on developing taxonomies of changes in various components of
the kind of systems in focus, namely administrative, data-intensive systems. The
emphasis of our work, however, has been on empirical studies. The use of a benchmark
of maintenance tasks proved useful in an industrial experiment on evaluation of CASE
tools. Another study is currently being undertaken in a major Norwegian software house
to test hypotheses on maintenance. Yet another experiment, also based on a set of
predefined maintenance tasks, were carried out in a research and teaching context of the
persistent programming language Napier88. As part of this experiment, we developed a
new technique for automatic logging of commands. Finally, we outlined several
experiments aiming to evaluate tools that potentially support maintenance.

Within the present project there were severe resource limitations. It was only
possible to carry out pilot studies of limited size and short duration, and it was only
possible to work with available systems and tools that may not be the ideal choices for
such studies. Moreover, we were constrained to work with the subjects who were
available, regardless of their experience. However, in spite of these limitations we are
going on with experiments, for example, assessing the impact of people on the
maintenance process, the efficiency of experienced maintainers versus novices, and we
hope to produce further interesting results.

Acknowledgements
The authors benefited from a collaboration project between Norway and UK funded by
the Research Council of Norway and British Council.

References
[1] Ahlberg, C. and Shneiderman, B. “Visual Information Seeking: tight coupling of dynamic query

filters with starfield displays”. In: ACM CHI'94 (Boston, MA, 24–28 April, 1994), pp. 313–317.

[2] Banerjee, J., Kim, W., Kim, H.-J. and Korth, H.F. “Semantics and Implementation of Schema
Evolution in Object-Oriented Databases”. In: ACM SIGMOD 1987 Conference on the Management
of Data (San Francisco, CA, 27–29 May, 1987), pp. 311–322, 1987.

[3] Boehm, B.W. Software Engineering Economics. Englewood Cliffs, N.J. Prentice-Hall, 1981.

[4] Chikofsky, E. and Cross, J. “Reverse Engineering and Design Recovery: A Taxonomy”. IEEE
Software, Vol. 7, No. 1, pp. 13-17, January 1990.

[5] Elmasri, R. and Navathe, S.B. Fundamental of Database Systems. Benjamin/Cummings, 1989.

[6] Ferraby, L. Change Control During Computer Systems Development. Prentice-Hall (UK), 1991.

13

[7] http://www.dcs.gla.ac.uk/zest/. Persistence and Distribution Group, Department of Computing
Science, 1996.

[8] Glass, R.L. and Vessey, I. “Contemporary Application-Domain Taxonomies”. IEEE Software, pp.
63–76, July 1995.

[9] Jørgensen, M. “An Empirical Study of Software Maintenance Tasks”. Journal of Software
Maintenance, Vol. 7, No. 1, pp. 27–48, January–February 1995.

[10] Jørgensen, M., Bygdås, S.S. and Lunde, T. Efficiency Evaluation of CASE Tools – Methods and
Results. Scientific Report TF R 38/95, Telenor FoU, August 1995.

[11] Leveson, N.G. “High-Pressure Steam Engines and Computer Software”. IEEE Computer, pp. 65–73,
October 1994.

[12] Lientz, B.P. and Swanson, E.B. Software Maintenance Management: A Study of the Maintenance in
487 Data Processing Organizations. Addison-Wesley Publishing Company, Reading, Mass., 1980.

[13] Martinussen, J.P. A CASE Study of Software Maintenance in a large Norwegian Software House.
M.Sc. Thesis, Department of Informatics, University of Oslo, 1996.

[14] Morrison, R., Brown, F., Connor, R. and Dearle, A. The Napier88 Reference Manual. Technical
Report PPRR-77-89, Universities of Glasgow and St Andrews, 1989.

[15] Nosek, J.T. and Palvia, P. “Software Maintenance Management: Changes in the last Decade”.
Journal of Software Maintenance, Vol. 2, No. 3, pp. 157–174, 1990.

[16] Putnam, L.H. “Software Cost Estimating and Life Cycle Control”. IEEE Catalog, 1982.

[17] Sjøberg, D.I.K. “Quantifying Schema Evolution”. Information and Software Technology, Vol. 35,
No. 1, pp. 35–44, January 1993.

[18] Sjøberg, D.I.K. “Towards a Methodology for Evaluating Software Maintenance Technology”. In:
18th Information systems Research seminar In Scandinavia (IRIS18) (Gjern, Denmark, 11–13
August, 1995), Dahlbom, B. et al. (editors), pp. 653–663, Gothenburg Studies in Informatics, Report
7, June 1995.

[19] Sjøberg, D.I.K., Atkinson, M.P. and Welland, R. Maintaining Consistency Using Software
Constraints. Preprint Report 1996 No. 1, Department of Informatics, University of Oslo, February
1996.

[20] Sjøberg, D.I.K., Cutts, Q., Welland, R. and Atkinson, M.P. “Analysing Persistent Language
Applications”. In: Sixth International Workshop on Persistent Object Systems (Tarascon, Provence,
France, 5–9 September, 1994), Atkinson, M.P., Benzaken, V. and Maier, D. (editors), pp. 235–255,
Springer-Verlag and British Computer Society, 1994.

[21] Sjøberg, D.I.K., Welland, R., Atkinson, M.P., Philbrow, P. and Waite, C. Exploiting Persistence in
Build Management. Software – Practice and Experience, 1997. (to appear)

[22] Sjøberg, D.I.K., Welland, R., Atkinson, M.P., Philbrow, P., Waite, C. and MacNeill, S. “The
Persistent Workshop – a Programming Environment for Napier88”. In: 7th Nordic Workshop on
Programming Environment Research (Aalborg, Denmark, 29–31 May, 1996), Bendix, L., Nørmark,
K. and Østerbye, K. (editors), pp. 37–52.

[23] Swanson, E.B. “The Dimensions of Maintenance”. In: Second International Conference on Software
Engineering (13-15 October, San Francisco, California, Long Beach, CA, 1976), pp. 492-497, IEEE
Computer Society. IEEE Catalog No 76CH1125-4 C.

[24] Zelkowitz, M.V. “Perspectives on Software Engineering”. ACM Computing Surveys, Vol. 10, No. 2,
pp. 197–216, June 1978.

