 Surname 7

Name
Professor
Course
Date
EXPLAIN WHAT HUFFMAN CODING IS AND WHY IT IS IMPORTANT
Huffman coding is a data compression technique in computer science and data science. It is one of the lossless compression model techniques that works particularly well on text but can be applied to any file type. Using the method to compress a file can lessen the storage it needs by a third, half, or even more. The invention of this technique has transformed information compression and transmission models. It is, therefore, important to understand the inner workings of the Huffman coding technique and its procedural compression process. In addition, it is vital to explore its applicability and importance in various fields of modern data processing, such as image compression, communication, file storage, and data encryption.
The technique was designed by David A. Huffman of MIT in 1952 to compress text data so that a file occupies fewer bytes. Although a relatively simple compression algorithm, Huffman is powerful enough that variants are still used nowadays in computer networks, HDTV, modems, and other areas. Typically, text data is stored in a standard format of 8 bits per character, using ASCII encoding maps each character to a binary integer value from 0 to 255. The idea of Huffman encoding is to abandon encoding an 8-bit rigid system.
His pioneering idea was to use binary encodings of different lengths for different characters. The advantage of doing this is that if a character frequently appears in the file, such as the very common letter "e, "it could be given a shorter encoding (hence fewer bits), making the overall file smaller. The downside is that some characters may require higher than 8-bit encoding, but this is reserved for infrequent characters, so the extra cost is worth it.
There are a few standard steps in the procedure for using this type of file compression. The initial phase evaluates the frequency of occurrence of all input discrete data units (these may include characters and pixel units). A simple example will be used to illustrate the process. Let us take as an example the following example.txt file whose content is "ab ab cab." This text would occupy 10 bytes (80 bits) in the original file, including spaces and a special "end of file" (EOF) byte. In this initial step of the Huffman algorithm, a count of each input data symbol is calculated and used to construct a frequency table. This table is then used as a map:

	Discrete unit
	Count

	‘ ‘
	2

	a
	3

	B
	3

	C
	1

	Eof
	1

[bookmark: _GoBack]Afterward comes the creation of a coding tree. First, counts are added to the struts of the nodes that will be used to create the binary tree. Each node has a character and the number of times it appears. Nodes are then placed in a priority queue, where smaller accounts are prioritized, storing them in a priority sequence. As a result, characters with lower numbers will move forward in the queue faster. It will be seen that the way the priority queue breaks ties is quite arbitrary, which is why, in this case, "c" may end before EOF, while "a" is before "b."
The next step is to build the tree. The process will repeatedly remove two nodes from the start of the queue, the two nodes with the smallest frequencies, and join them into a new node whose frequency is their sum. Both nodes are positioned as children of the new node; the first deleted node becomes the left child, and the second becomes the right child. The new node is reinserted into the queue in order. It is observed from this that the priority will now be less urgent since the frequency is the sum of the frequencies of both children. This process is repeated until the queue contains only one binary tree node, all others being children. The resulting tree is the complete tree of Huffman codes being constructed.
The Huffman code for each character can be derived from the binary tree. This can be done by considering each left branch as a binary value of 0 and each right branch as a binary value of 1. The code of each character can be determined by traversing the tree. To get to ' ' '', one goes left twice from the root, so the code for ' ' is 00. Similarly, the code for 'c' would be "010", the code for EOF would be "011", the code for 'a would be "10", and the code for 'b would be "11". Traversing the tree can produce a map from the characters to their binary representations. Although binary representations are integers, they are usually stored as strings because they consist of binary digits and can have arbitrary lengths. For this tree, the encoding map would look like this:
{' ': "00", 'a': "10", 'b': "11", 'c': "010", EOF: "011"}
The next step is to encode the file's text into a shorter binary representation. Using the coding map above, the text "ab ab cab" would be coded as follows:
1011001011000101011011
The overall encoded contents of the file require 22 bits, or just under 3 bytes, compared to the original file size of 10.
Decoding a file is simple. A Huffman tree must be used to decode the previously encoded text with its binary patterns. The decoding algorithm model involves reading each bit from the file, one at a time, and using that bit to traverse the Huffman tree. If the bit is 0, one must move to the left in the tree structure. If the bit is 1, one must move to the right. This is done repeatedly until a leaf node is reached. Leaf nodes represent characters, so that character is generated when a leaf is reached.
Since character encodings differ in length, it is normal for the length of a Huffman-encoded file not to correspond exactly to multiples of 8 bits. In such cases, files are saved as sequences of full bytes. Then, the remaining bits of the last byte are padded with zeros. The user does not need to worry about running this process as it is an innate feature of the underlying file framework. The fact that characters are kept without clear delimiters may raise concerns. This is because there could be an inconsistency in character encoding lengths, resulting in characters spanning multiple byte boundaries, as illustrated by the character "a" at the end of the second byte. However, this feature will make decoding easy. This is because Huffman encodings have a useful prefix attribute that prevents the encoding of one character from being used as a starting sequence for the encoding of another character.
The main application of the algorithm is data compression without loss of information. One study showed that it produces compression ratios between 0.19 and 0.9, with associated storage savings percentages between 20.0% and 72.5%. This is especially important for datasets containing primarily textual content. This is particularly useful when large volumes of information must be archived or shared. Additionally, the computational challenge of Huff Nan coding remained low, allowing for rapid encoding and decoding procedures. This efficiency is particularly beneficial in circumstances that require rapid or real-time data compression and decompression, such as communications networks or high-performance data transmission systems, as it will improve information transfer speeds.

Another area where the algorithm is applicable is image compression. This is due to the dramatic increase in the use of digital images on the Internet. Compression By combining a variation of the algorithm known as canonical Huffman coding with principal component analysis (PCA) and discrete wavelet transform (DWT), it can outperform other image compression approaches, leading to the conclusion that This approach improves the quality of storage and transmission. of image data through—digital networks.
The other area where the algorithm has found application is in encryption and security. In this context, it is used in addition to another encryption method. Evidence has shown that it successfully protects sensitive data and achieves high payload capacity using the Advanced Encryption Standard (AES) algorithm after compressing the data with the Huffman compression algorithm, which can be made with unlimited text length. Additionally, this approach can mask a single bit in each number or letter in the cover file. In addition, the approach respects cognitive transparency and does not make modifications to the original data obvious.
In conclusion, Huffman Encoding, with its simple and elegant way of compressing and decompressing data, remains a must-have in modern computing. Its relevance touches several areas, from media communications to data storage and security. As the volume of computerized data continues to grow intensely, the optimization of Huffman Encoding's data processing could not be more significant.

WORK CITED
Arif, Khaqan, and Amad, your Rehman. "Implementation and Analysis of Lossless Data Compression." Traditional Journal of Multidisciplinary Sciences (2023): 13-28. Kun Tu, Dariusz Puchala. "Variable-to-Variable Huffman Coding: Optimal and Greedy Approaches." 11 October 2022. NCBI. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602054/
Hamza, and Jamal Mohamed Kadhim. "Text-based steganography using Huffman compression and AES encryption algorithm." Iraqi Journal of Science (2021): 110-120. Alistair, Moffat. "Huffman Coding." ACM Computing Surveys 2019: 1–35. https://dl.acm.org/doi/10.1145/3342555
Ranjan, Rajiv, and Prabhat Kumar. "An Improved Image Compression Algorithm Using 2D DWT and PCA with Canonical Huffman Encoding." 25 September 2023. MDPI. https://www.mdpi.com/1099-4300/25/10/1382

