

CLASSIFICATION
AND FUNCTIONS
OF OPEARATING
SYSTEMS

CLASSIFICATION AND FUNCTIONNS OF OPERATING SYSTEMS

Operating systems are essential software components that manage computer hardware and provide

common services for computer programs. Operating systems(OS) act as intermediaries between the

hardware and software of the Computer, facilitating communication and management of resources.

Operating systems are classified based on their structure, their functionality and usage. The primary

functions of an operating system include; Resource management, memory management, process

management, file System management, Device management and user interface.

CLASSIFICATION OF OPERATING SYSTEMS

1. SINGLE USER VS MULTI-USER OS

Single user operating systems are designed for individual users, they only allow one user to access the

system at a time. They are intended for use on devices like wireless phones and two way messaging

devise where only one user interacts with the system. They can handle tasks like memory management,

hardware connectivity and running applications for single users.

On the other hand multi user operating systems allows multiple users to access a single machine

simultaneously thus enabling shared access to resources like hardware and software. Different

individuals can have different accounts and access the system at the same time each with their own

settings and access permissions, These systems are commonly used in network environments and

servers where multiple people need to access shared resources.

2. REAL-TIME OPERATING SYSTEMS

A real time operating system (RTOS) s an operating system for real time computing applications that

process data and events that have critically defined time constraints. It is crucial for applications where

timely and deterministic responses are required, such applications include; Industrial automation,

robotics, medical devices and aerospace systems.

Real-Time operating systems ensure that tasks are completed within a specified deadline hence

providing predictability and reliability in time critical applications, they are categorized into two, based

on their ability to meet deadlines, that is;

a) Hard Real-Time Operating systems; Taks have strict deadlines that must be met, failure to meet

the deadlines can result in system failure, examples include; airbag deployment in cars, medical

devices and missile guidance systems.

b) Soft Real-Time Operating systems; Soft real time operating systems also have deadlines but

missing a deadline does not lead to system failure, These systems prioritize tasks based on theor

importance and attempt to meet deadlines.

3. DISTRIBUED OPERATING SYSTEMS

Distributed operating system is a type of operating system that runs on multiple computers and

coordinates their activities. Each computer in a distributed operating system is called a node, and they

work together to provide a unified computing environment. This allows for better resource utilization,

improved performance.

One of the key features of a distributed operating system is transparency, which means that the system

appears as a single, unified entity to its users. This transparency can be achieved in several different

ways, including location transparency, which allows users to access resources without needing to know

where they are physically located, and access transparency, which allows users to access resources using

the same methods regardless of their location.

Another important feature of distributed operating systems is fault tolerance. By distributing tasks across

multiple nodes, the system can continue to function even if one or more nodes fail.

Security is also a major concern in distributed operating systems. Because resources are shared across

multiple nodes, it is important to ensure that access is restricted only to authorized users and that data is

protected from unauthorized access or modification.

There are many different types of distributed operating systems, each with its own strengths and

weaknesses. Some examples include network operating systems, which are designed to run on multiple

computers connected by a network, and distributed operating systems for cloud computing, which are

designed to run on virtualized hardware in a data center.

4. Batch processing vs. Interactive Operating System.

Batch processing involves the execution of a series of jobs in a non-interactive manner, where the tasks

are queued up and processed one after the other without user intervention. This approach is commonly

used in scenarios where large volumes of data need to be processed efficiently, such as in payroll

processing, billing systems, and report generation. Batch processing is well-suited for repetitive, time-

consuming tasks that can be automated and scheduled to run at off-peak hours to optimize system

resources.

On the other hand, interactive operating systems enable real-time user interaction with the computer

system. Users can input commands, receive immediate feedback, and interact with applications in a

dynamic and responsive manner. Interactive OS is essential for tasks that require user input, such as

gaming, web browsing, graphic design, and real-time data analysis. This type of operating system

provides a platform for users to interact with the computer system in a flexible and intuitive way.

One of the key differences between batch processing and interactive OS is the level of user involvement.

In batch processing, users typically do not interact with the system during job execution, whereas

interactive OS relies heavily on user input and feedback. Additionally, batch processing is designed for

handling large-scale data processing tasks efficiently, while interactive OS prioritizes real-time user

interaction and responsiveness.

5. EMBEDED OPERATING SYSTEM

Embedded operating systems are specialized operating systems designed to perform specific functions

within a larger system. These operating systems are embedded directly into the firmware of a device and

are tailored to the requirements of the specific hardware and application. They are commonly found in

devices such as smartphones, digital cameras, medical devices, and automotive systems.

One of the key characteristics of embedded operating systems is their ability to operate within the

constraints of the hardware on which they are installed. This means that they are often designed to be

lightweight and efficient, with minimal resource requirements. They are also typically optimized for real-

time processing, as many embedded systems require immediate responses to external stimuli.

Another important feature of embedded operating systems is their reliability and stability. Since many

embedded systems are used in critical applications such as medical devices or automotive control

systems, it is essential that the operating system is robust and can operate continuously without failure.

Embedded operating systems can be categorized into two main types: Real-time operating systems

(RTOS) and General-purpose operating systems. RTOS are designed for applications that require precise

timing and quick response times, such as industrial control systems and robotics. General-purpose

operating systems, on the other hand, are more versatile and can be used in a wider range of

applications, such as consumer electronics and networking equipment

FUNCTIONS OF OPERATING SYSTEMS

1. Process Management:

Operating systems manage processes, which are instances of executing programs. They allocate system

resources to processes, such as CPU time, memory, and input/output devices. The operating system also

provides mechanisms for process synchronization and communication.

2. Memory Management:

Operating systems manage a computer's memory, ensuring that each process has enough memory to

execute and that memory is used efficiently. This includes allocating and deallocating memory, swapping

processes in and out of memory, and implementing virtual memory.

3. File System Management:

Operating systems manage files on storage devices, providing a file system that organizes and stores

data. This includes creating, deleting, and modifying files, as well as controlling access to files through

file permissions.

4. Device Management:

Operating systems manage input/output devices such as keyboards, mice, printers, and disk drives. They

provide device drivers to communicate with hardware devices and handle input/output requests from

processes.

5. Security and Protection:

Operating systems enforce security measures to protect the computer system from unauthorized access

and malicious software. This includes user authentication, access control, and data encryption.

6. User Interface:

Operating systems provide a user interface that allows users to interact with the computer. This can be a

command-line interface, a graphical user interface, or a combination of both.

7. Networking:

Operating systems support networking capabilities, allowing computers to communicate with each other

over a network. This includes managing network connections, protocols, and network configurations.

8. Error Handling:

Operating systems handle errors and exceptions that occur during the operation of the computer

system. They provide mechanisms for error detection, reporting, and recovery.

REFERENCE

Silberschatz, P.B. Galvin, G. Gagne. Operating Systems Concepts, Sixth edition, Addison Wesley, 2001.

S. Tanenbaum. Distributed Operating Systems, Prentice-Hall, 1995.

S. TanenbaumModern Operating Systems, Prentice-Hall, 19924.

.

